Iโd like to thank Dr. Andrew Vickers for his help with this presentation.
You can visit his page on mskcc.org/profile/andrew-vickers.
\[ \newcommand{\green}[1]{\color{green}{#1}} \newcommand{\red}[1]{\color{red}{#1}} \]
This lecture follows the article A simple, step-by-step guide to interpreting decision curve analysis.
Introduction: Motivation behind Decision Curve Analysis and how to draw a Decision Curve.
How to interpret a Decision Curve: Step by Step guide.
Standard software is available to run decision curves in R, SAS and Stata on decisioncurveanalysis.org. Python should be with us soon!
All interactive plots in this presentation were created with rtichoke R package (I am the author ๐), you are also invited to explore rtichoke blog for reproducible examples and some theory.
For ggplot2 outputs dcurves R package is available on CRAN.
Discrimination ๐: Modelโs ability to separate between events and non-events (ROC Curve, AUROC, Sensitivity, Specificity, NPV, PPV, Lift etc).
Calibration โ๏ธ: Agreement between predicted probabilities and the observed outcomes (Calibration Curve, Calibration in the large, Calibration in the small etc).
Problem๐ These metrics are not directly informative to clinical value, nor to full decision analytic approaches.
Solution๐ Decision Curve Analysis calculates a clinical โNet Benefitโ prediction models or diagnostic tests in comparison to default strategies of treating all or no patients.
\[{\text{X axis: } {p_{t}} \text{ (Probability Threshold)}}\]
\[\begin{aligned} {\text{Y axis: }\text{NB Model} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}}} \end{aligned}\]
\[\begin{aligned} \text{NB Treat None} = 0 \end{aligned}\]
\[\begin{aligned} \text{NB Treat All} = {\text{Prevalence}} - {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}\]
๐
๐คข
๐
๐คจ
๐คข
๐คจ
Probability Threshold is derived from Equivalence between
\[EV_{Treat} = p(Disease) * U_{TP} + p(No Disease) * U_{FP}\]
\[EV_{NoTreat} = p(Disease) * U_{FN} + p(No Disease) * U_{TN}\]
Probability Threshold is derived from Equivalence between
\[EV_{Treat} = EV_{{NoTreat}}\]
\[p(Disease) * U_{TP} + p(No Disease) * U_{FP} =p(Disease) * U_{FN} + p(No Disease) * U_{TN}\]
Probability Threshold is derived from Equivalence between
\[EV_{Treat} = EV_{{NoTreat}}\]
\[p(Disease) * U_{TP} + (1-p(Disease)) * U_{FP} =p(Disease) * U_{FN} + (1-p(Disease)) * U_{TN}\]
Probability Threshold is derived from Equivalence between
\[EV_{Treat} = EV_{{NoTreat}}\]
\[p(Disease) * (U_{TP} - U_{FN}) =(1-p(Disease)) * (U_{TN} - U_{FP})\]
Probability Threshold is derived from Equivalence between
\[EV_{Treat} = EV_{{NoTreat}}\]
\[\frac{p(Disease)}{(1-p(Disease))} = \frac{(U_{TN} - U_{FP})}{(U_{TP} - U_{FN})}\]
Probability Threshold is derived from Equivalence between
\[EV_{๐} = EV_{{No๐}}\]
\[\frac{p(๐คข)}{(1-p(๐คข))} = \frac{(U_{๐คจ} - U_{๐+๐คจ})}{(U_{๐+๐คข} - U_{๐คข})}\]
\[\begin{aligned} \text{Sensitivity } = \frac{\green{\bf{TP}}}{\text{TP + FN}} \end{aligned}\]
\[\begin{aligned} \text{Specificity} = \frac{\green{\bf{TN}}}{\text{TN + FP}} \end{aligned}\]
\[\begin{aligned} {\text{Prevalence}} = \frac{\text{TP + FN}}{\text{N}} \end{aligned}\]
\[\begin{aligned} \text{Net Benefit} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}\]
\[\begin{aligned} \text{Sensitivity } = \frac{\green{\bf{TP}}}{\text{Real Positives}} \end{aligned}\]
\[\begin{aligned} \text{Specificity} = \frac{\green{\bf{TN}}}{\text{Real Negatives}} \end{aligned}\]
\[\begin{aligned} {\text{Prevalence}} = \frac{\text{Real Positive}}{\text{N}} \end{aligned}\]
\[\begin{aligned} \text{Net Benefit} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}\]
\[\begin{aligned} \text{Sensitivity } = \frac{\green{\bf{TP}}}{\text{Real Positives}} \end{aligned}\]
\[\begin{aligned} \text{Specificity} = \frac{\green{\bf{TN}}}{\text{Real Negatives}} \end{aligned}\]
\[\begin{aligned} {\text{Prevalence}} = \frac{\text{Real Positive}}{\text{N}} \end{aligned}\]
\[\begin{aligned} {\text{1 - Prevalence}} = \frac{\text{Real Negatives}}{\text{N}} \end{aligned}\]
\[\begin{aligned} \text{Net Benefit} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}\]
\[\begin{aligned} \text{Sensitivity } = \frac{\green{\bf{TP}}}{\text{Real Positives}} \end{aligned}\]
\[\begin{aligned} \text{Specificity} = \frac{\green{\bf{TN}}}{\text{Real Negatives}} \end{aligned}\]
\[\begin{aligned} {\text{Prevalence}} = \frac{\text{Real Positive}}{\text{N}} \end{aligned}\]
\[\begin{aligned} {\text{1 - Prevalence}} = \frac{\text{Real Negatives}}{\text{N}} \end{aligned}\]
\[\begin{aligned} \text{Net Benefit} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}\]
\[\tiny{\begin{aligned} \text{Net Benefit} = {\text{Sensitivity}} * {\text{Prevalence}} - {\text{(1 - Specificity)}} * {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}}\]
\[\begin{aligned} \green{\bf{Sensitivity}} = \frac{\green{\bf{TP}}}{\text{Real Positives}} \end{aligned}\]
\[\begin{aligned} \red{\bf{1 - Specificity}} = \frac{\bf{\red{FP}}}{\text{Real Negatives}} \end{aligned}\]
\[\begin{aligned} {\text{Prevalence}} = \frac{\text{Real Positives}}{\text{N}} \end{aligned}\]
\[\begin{aligned} {\text{1 - Prevalence}} = \frac{\text{Real Negatives}}{\text{N}} \end{aligned}\]
\[\begin{aligned} \green{\bf{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}\]
\[\tiny{\begin{aligned} \green{\bf{Net Benefit}} = {\green{\bf{Sensitivity}}} * {\text{Prevalence}} - {\red{\bf{(1 - Specificity)}}} * {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}}\]
\[\begin{aligned} \green{\bf{Sensitivity}} = \frac{\green{\bf{TP}}}{\text{Real Positives}} \end{aligned}\]
\[\begin{aligned} \red{\bf{1 - Specificity}} = \frac{\bf{\red{FP}}}{\text{Real Negatives}} \end{aligned}\]
\[\begin{aligned} {\text{Prevalence}} = \frac{\text{Real Positives}}{\text{N}} \end{aligned}\]
\[\begin{aligned} {\text{1 - Prevalence}} = \frac{\text{Real Negatives}}{\text{N}} \end{aligned}\]
\[\begin{aligned} \green{\bf{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}\]
\[\tiny{\begin{aligned} \green{\bf{Net Benefit}} = {\green{\bf{Sensitivity}}} * {\text{Prevalence}} - {\red{\bf{(1 - Specificity)}}} * {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}}\]
\[\tiny{\begin{aligned} \text{Net Benefit Treat All} = {\green{\bf{1}}} * {\text{Prevalence}} - {\red{\bf{(1 - 0)}}} * {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}}\]
\[\begin{aligned} \green{\bf{Sensitivity}} = \frac{\green{\bf{TP}}}{\text{Real Positives}} \end{aligned}\]
\[\begin{aligned} \red{\bf{1 - Specificity}} = \frac{\bf{\red{FP}}}{\text{Real Negatives}} \end{aligned}\]
\[\begin{aligned} {\text{Prevalence}} = \frac{\text{Real Positives}}{\text{N}} \end{aligned}\]
\[\begin{aligned} {\text{1 - Prevalence}} = \frac{\text{Real Negatives}}{\text{N}} \end{aligned}\]
\[\begin{aligned} \green{\bf{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}\]
\[\tiny{\begin{aligned} \green{\bf{Net Benefit}} = {\green{\bf{Sensitivity}}} * {\text{Prevalence}} - {\red{\bf{(1 - Specificity)}}} * {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}}\]
\[\tiny{\begin{aligned} \text{Net Benefit Treat All} = {\text{Prevalence}} - {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}}\]
\[\begin{aligned} \green{\bf{Sensitivity}} = \frac{\green{\bf{TP}}}{\text{Real Positives}} \end{aligned}\]
\[\begin{aligned} \red{\bf{1 - Specificity}} = \frac{\bf{\red{FP}}}{\text{Real Negatives}} \end{aligned}\]
\[\begin{aligned} {\text{Prevalence}} = \frac{\text{Real Positives}}{\text{N}} \end{aligned}\]
\[\begin{aligned} {\text{1 - Prevalence}} = \frac{\text{Real Negatives}}{\text{N}} \end{aligned}\]
\[\begin{aligned} \green{\bf{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}\]
\[\tiny{\begin{aligned} \green{\bf{Net Benefit}} = {\green{\bf{Sensitivity}}} * {\text{Prevalence}} - {\red{\bf{(1 - Specificity)}}} * {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}}\]
\[\tiny{\begin{aligned} \text{Net Benefit Treat All} = {\text{Prevalence}} - {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}}\]
\[\tiny{\begin{aligned} \text{Net Benefit Treat None} = {\green{\bf{0}}} * {\text{Prevalence}} - {\red{\bf{(1 - 1)}}} * {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}}\]
\[\begin{aligned} \green{\bf{Sensitivity}} = \frac{\green{\bf{TP}}}{\text{Real Positives}} \end{aligned}\]
\[\begin{aligned} \red{\bf{1 - Specificity}} = \frac{\bf{\red{FP}}}{\text{Real Negatives}} \end{aligned}\]
\[\begin{aligned} {\text{Prevalence}} = \frac{\text{Real Positives}}{\text{N}} \end{aligned}\]
\[\begin{aligned} {\text{1 - Prevalence}} = \frac{\text{Real Negatives}}{\text{N}} \end{aligned}\]
\[\begin{aligned} \green{\bf{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}\]
\[\tiny{\begin{aligned} \green{\bf{Net Benefit}} = {\green{\bf{Sensitivity}}} * {\text{Prevalence}} - {\red{\bf{(1 - Specificity)}}} * {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}}\]
\[\tiny{\begin{aligned} \text{Net Benefit Treat All} = {\text{Prevalence}} - {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}}\]
\[\tiny{\begin{aligned} \text{Net Benefit Treat None} = 0 \end{aligned}}\]
Low Probability Threshold means that Iโm worried about the outcome:
High Probability Threshold means that Iโm worried about the Intervention:
Remember: almost always (specially in Health Care) -
Sensitivity does not have the same importance as Specificity and having 1 TP does not have the same clinical utility as having 1 FP.
A good example for a bad practice in evaluating performance of prediction model is the Youdenโs J statistics:
\[{\displaystyle J={\frac {\green{\bf{TP}}}{{\green{\bf{TP}}}+{\red{\bf{FN}}}}}+{\frac {\green{\bf{TN}}}{{\green{\bf{TN}}}+{\red{\bf{FP}}}}}-1}\] Maximizing Youdenโs J statistic might lead to a Probability Threshold that will do more harm than good, even if the prediction model is accurate!
Remember: almost always (specially in Health Care) -
Sensitivity does not have the same importance as Specificity and having 1 TP does not have the same clinical utility as having 1 FP.
A good example for a bad practice in evaluating performance of prediction model is the Youdenโs J statistics:
\[{\displaystyle \green{\bf{J}}={\green{\bf{Sens}}}-{\red{\bf{(1 - Spec)}}}}\]
\[{\displaystyle \green{\bf{NB}}={\green{\bf{Sens}}} * {\text{Prev}}-{\red{\bf{(1 - Spec)}}}* {\text{(1 - Prev)}}*{\frac{{p_{t}}}{{1 - p_{t}}}}}\]
I wouldnโt give more than 4 antibiotics in order to help 1 infected patient.
If a patientโs risk was above 20% I will give him antibiotics, otherwise I wonโt.
The risk of 20% is an odds of 1:4, so in using a threshold probability of 20%, the doctor is telling us โmissing an infected patiant is 4 times worse than giving antibiotics to a healthy patient.โ
\[p_t = \frac{1}{1 + 4} = 0.2\] \[\frac{p_t}{1 - p_t} = \frac{0.2}{1 - 0.2} = \frac{1}{4}\]
I will be indifferent ๐
For having 1 TP for 4 FP \[p_t = \frac{1}{1 + 4} = 0.2\] \[\frac{p_t}{1 - p_t} = \frac{0.2}{1 - 0.2} = \frac{1}{4}\]
\[\begin{aligned}[t] {\text{Net Benefit}} &= {\frac{\text{1}}{\text{5}} - \frac{\text{4}}{\text{5}} * {\frac{1}{4}} = 0} \end{aligned}\]
I will be sad ๐
For having 1 TP for 5 FP \[p_t = \frac{1}{1 + 4} = 0.2\] \[\frac{p_t}{1 - p_t} = \frac{0.2}{1 - 0.2} = \frac{1}{4}\] \[\begin{aligned}[t]
{\text{Net Benefit}} &= {\frac{\text{1}}{\text{6}} - \frac{\text{5}}{\text{6}} * {\frac{1}{4}} = -0.04166'}
\end{aligned}\]
I will be happy ๐
For having 1 TP for 3 FP \[p_t = \frac{1}{1 + 4} = 0.2\] \[\frac{p_t}{1 - p_t} = \frac{0.2}{1 - 0.2} = \frac{1}{4}\]
\[\begin{aligned}[t] {\text{Net Benefit}} &= {\frac{\text{1}}{\text{4}} - \frac{\text{3}}{\text{4}} * {\frac{1}{4}} = 0.0625} \end{aligned}\]
Letโs think in terms of money ๐ธ
A wine importer buys โฌ1m of wine from France and sells it in the USA for $1.5m ๐ท
Net Benefit = Income - Expenditure
Net Benefit = 1.5m$ - 1mโฌ = ? ๐ค
Letโs say that 1โฌ is worth 1.25$
Exchange-Rate = 1.25 ($ / โฌ)
1mโฌ = 1m * 1.25$
Net Benefit = 1.5m$ - 1.25m$ = 250,000$
Which is the equivalent of being given 250,000$:
Net Benefit = 250,000$ - 0$ = 250,000$
๐๐
๐คข๐คข๐ท๐ท๐ท๐ท๐ท๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}}\]
๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}}\]
๐๐
๐คข๐คข๐ท๐ท๐ท๐ท๐ท๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]
๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]
๐๐
๐คข๐คข๐ท๐ท๐ท๐ท๐ท๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{2}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]
๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]
๐๐
๐คข๐คข๐ท๐ท๐ท๐ท๐ท๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{2}}}{\text{10}} - \frac{\red{\bf{0}}}{\text{10}} * {\frac{{1}}{{4}}}\]
๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{4}}}{\text{10}} * {\frac{{1}}{{4}}}\]
๐๐
๐คข๐คข๐ท๐ท๐ท๐ท๐ท๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{2}}}{\text{10}} - \frac{\red{\bf{0}}}{\text{10}} * {\frac{{1}}{{4}}} = \frac{\green{\bf{2}}}{\text{10}}\]
๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{4}}}{\text{10}} * {\frac{{1}}{{4}}} = \frac{\green{\bf{2}}}{\text{10}}\]
๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}}\]
๐๐๐๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ
\[{\text{Net Benefit Treat All}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}}\]
๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]
๐๐๐๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ
\[{\text{Net Benefit Treat All}} = \frac{\green{\bf{TP}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]
๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]
๐๐๐๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ
\[{\text{Net Benefit Treat All}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]
๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{4}}}{\text{10}} * {\frac{{1}}{{4}}}\]
๐๐๐๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ
\[{\text{Net Benefit Treat All}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{7}}}{\text{10}} * {\frac{{1}}{{4}}}\]
๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{{\green{\bf{12}}}}{\text{40}} - \frac{{\red{\bf{4}}}}{\text{40}} = \frac{{\green{\bf{8}}}}{\text{40}}\]
๐๐๐๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ
\[{\text{Net Benefit Treat All}} = \frac{{\green{\bf{12}}}}{\text{40}} - \frac{{\red{\bf{7}}}}{\text{40}} = \frac{{\green{\bf{5}}}}{\text{40}}\]
๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ
\[{\text{Net Benefit}} = \frac{{\green{\bf{8}}}}{\text{40}}\]
๐๐๐๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ
\[{\text{Net Benefit Treat All}}= \frac{{\green{\bf{5}}}}{\text{40}}\]
\[\scriptsize{\text{(Net Benefit - Net Benefit All)} * \frac{1-p_t}{p_t} = (\frac{{\green{\bf{8}}}}{\text{40}} - \frac{{\green{\bf{5}}}}{\text{40}}) * 4 = \frac{{\green{\bf{3}}}}{\text{10}} }\]
\[\scriptsize{\text{Interventions Avoided (per 100 cases)} = \frac{\green{\bf{3}}}{10} * 100 = \green{\bf{30}}}\]
๐๐๐๐๐๐๐
๐ท๐ท๐ท๐ท๐ท๐ท๐ท๐คจ๐คจ๐คจ
\[\scriptsize{\text{Interventions Avoided (per 100 cases)} = (\frac{\green{\bf{TN}}}{\text{N}} - \frac{\red{\bf{FN}}}{\text{N}} * {\frac{{1 - p_{t}}}{{p_{t}}}}) * 100}\]
๐๐๐๐๐๐๐
๐ท๐ท๐ท๐ท๐ท๐ท๐ท๐คจ๐คจ๐คจ
\[\scriptsize{\text{Interventions Avoided (per 100 cases)} = (\frac{\green{\bf{\text{3}}}}{\text{10}} - \frac{\red{\bf{FN}}}{\text{10}} * 4) * 100}\]
๐๐๐๐๐๐๐
๐ท๐ท๐ท๐ท๐ท๐ท๐ท๐คจ๐คจ๐คจ
\[\scriptsize{\text{Interventions Avoided (per 100 cases)} = (\frac{\green{\bf{\text{3}}}}{\text{10}} - \frac{\red{\bf{\text{0}}}}{\text{10}} * 4) * 100}\]
๐๐๐๐๐๐๐
๐ท๐ท๐ท๐ท๐ท๐ท๐ท๐คจ๐คจ๐คจ
\[\scriptsize{\text{Interventions Avoided (per 100 cases)} = (\frac{\green{\bf{\text{3}}}}{\text{10}} - \frac{\red{\bf{\text{0}}}}{\text{10}} * 4 )* 100} = \green{\bf{30}} \]
๐๐
๐คข๐คข๐ท๐ท๐ท๐ท๐ท๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}}\]
๐๐๐๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ
\[{\text{Net Benefit Treat All}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}}\]
๐๐
๐คข๐คข๐ท๐ท๐ท๐ท๐ท๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]
๐๐๐๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ
\[{\text{Net Benefit Treat All}} = \frac{\green{\bf{TP}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]
๐๐
๐คข๐คข๐ท๐ท๐ท๐ท๐ท๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{2}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]
๐๐๐๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ
\[{\text{Net Benefit Treat All}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]
๐๐
๐คข๐คข๐ท๐ท๐ท๐ท๐ท๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{2}}}{\text{10}} - \frac{\red{\bf{0}}}{\text{10}} * {\frac{{1}}{{4}}}\]
๐๐๐๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ
\[{\text{Net Benefit Treat All}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{7}}}{\text{10}} * {\frac{{1}}{{4}}}\]
๐๐
๐คข๐คข๐ท๐ท๐ท๐ท๐ท๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{8}}}{\text{40}} - \frac{\red{\bf{0}}}{\text{10}} * {\frac{{1}}{{4}}} = {\frac{{\green{\bf{8}}}}{{40}}}\]
๐๐๐๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ
\[{\text{Net Benefit Treat All}} = \frac{{\green{\bf{12}}}}{\text{40}} - \frac{{\red{\bf{7}}}}{\text{40}} = \frac{{\green{\bf{5}}}}{\text{40}}\]
๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ
\[{\text{Net Benefit}} = \frac{{\green{\bf{8}}}}{\text{40}}\]
๐๐๐๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ
\[{\text{Net Benefit Treat All}}= \frac{{\green{\bf{5}}}}{\text{40}}\]
\[\scriptsize{\text{(Net Benefit - Net Benefit All)} * \frac{1-p_t}{p_t} = (\frac{{\green{\bf{8}}}}{\text{40}} - \frac{{\green{\bf{5}}}}{\text{40}}) * 4 = \frac{{\green{\bf{3}}}}{\text{10}} }\]
\[\scriptsize{\text{Interventions Avoided (per 100 cases)} = \frac{\green{\bf{3}}}{10} * 100 = \green{\bf{30}}}\]
๐๐
๐ท๐ท๐คข๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ
\[\scriptsize{\text{Interventions Avoided (per 100 cases)} = (\frac{\green{\bf{TN}}}{\text{N}} - \frac{\red{\bf{FN}}}{\text{N}} * {\frac{{1 - p_{t}}}{{p_{t}}}}) * 100}\]
๐๐
๐ท๐ท๐คข๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ
\[\scriptsize{\text{Interventions Avoided (per 100 cases)} = (\frac{\green{\bf{\text{7}}}}{\text{10}} - \frac{\red{\bf{FN}}}{\text{10}} * 4) * 100}\]
๐๐
๐ท๐ท๐คข๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ
\[\scriptsize{\text{Interventions Avoided (per 100 cases)} = (\frac{\green{\bf{\text{7}}}}{\text{10}} - \frac{\red{\bf{\text{1}}}}{\text{10}} * 4) * 100}\]
๐๐
๐ท๐ท๐คข๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ๐คจ
\[\scriptsize{\text{Interventions Avoided (per 100 cases)} = (\frac{\green{\bf{\text{7}}}}{\text{10}} - \frac{\red{\bf{\text{1}}}}{\text{10}} * 4 )* 100} = \green{\bf{30}} \]
Invasive Test might add information to the absolute risk with a possible Test Harm in forms of side affects or expenditure of time, effort or money.
I will be indifferent ๐ for having 1 TP for 10 Invasive Tests \[TestHarm = \frac{1}{10} = 0.1\]
\[\begin{aligned} \text{Net Benefit} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned} - TestHarm\]
Invasive Test might add information to the absolute risk with a possible Test Harm in forms of side affects or expenditure of time, effort or money.
I will be indifferent ๐ for having 1 TP for 10 Invasive Tests \[TestHarm = \frac{1}{10} = 0.1\]
\[\begin{aligned} \text{Net Benefit} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned} - TestHarm\]
The same is true for Implementation of Prediction Models ๐ฎ
๐งช๐งช๐งช๐งช๐งช๐งช๐งช๐งช๐งช๐งช
๐๐๐
๐คข๐คข๐คข๐ท๐ท๐ท๐ท๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} - TestHarm\]
๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}}\]
๐งช๐งช๐งช๐งช๐งช๐งช๐งช๐งช๐งช๐งช
๐๐๐
๐คข๐คข๐คข๐ท๐ท๐ท๐ท๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{1}{{4}}} - TestHarm\]
๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{1}{{4}}}\]
๐งช๐งช๐งช๐งช๐งช๐งช๐งช๐งช๐งช๐งช
๐๐๐
๐คข๐คข๐คข๐ท๐ท๐ท๐ท๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{1}{{4}}} - \frac{1}{10} * \frac{\red{\bf{10}}}{10}\]
๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{1}{{4}}}\]
๐งช๐งช๐งช๐งช๐งช๐งช๐งช๐งช๐งช๐งช
๐๐๐
๐คข๐คข๐คข๐ท๐ท๐ท๐ท๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{1}{{4}}} - \frac{1}{10} * \frac{\red{\bf{10}}}{10}\]
๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{1}{{4}}}\]
๐งช๐งช๐งช๐งช๐งช๐งช๐งช๐งช๐งช๐งช
๐๐๐
๐คข๐คข๐คข๐ท๐ท๐ท๐ท๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{0}}}{\text{10}} * {\frac{1}{{4}}} - \frac{1}{10} * \frac{\red{\bf{10}}}{10}\]
๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{4}}}{\text{10}} * {\frac{1}{{4}}}\]
๐งช๐งช๐งช๐งช๐งช๐งช๐งช๐งช๐งช๐งช
๐๐๐
๐คข๐คข๐คข๐ท๐ท๐ท๐ท๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{2}}}{\text{10}}\]
๐๐๐๐๐๐๐
๐คข๐คข๐คข๐คจ๐คจ๐คจ๐คจ๐ท๐ท๐ท
\[{\text{Net Benefit}} = \frac{\green{\bf{2}}}{\text{10}}\]