Decision Curve Analysis: Step by Step ๐Ÿ‘ฃ

Uriah Finkel

Acknowledgement:

Iโ€™d like to thank Dr. Andrew Vickers for his help with this presentation.

You can visit his page on mskcc.org/profile/andrew-vickers.

\[ \newcommand{\green}[1]{\color{green}{#1}} \newcommand{\red}[1]{\color{red}{#1}} \]

Agenda

Code for Decision Curve Analysis ๐Ÿ’ป

  • Standard software is available to run decision curves in R, SAS and Stata on decisioncurveanalysis.org. Python should be with us soon!

  • All interactive plots in this presentation were created with rtichoke R package (I am the author ๐Ÿ‘‹), you are also invited to explore rtichoke blog for reproducible examples and some theory.

  • For ggplot2 outputs dcurves R package is available on CRAN.

Introduction

Which Model is Better? ๐Ÿค”

Select patients for biopsy amongst men with elevated PSA - ๐Ÿ–– ROC

Which Model is Better? ๐Ÿค”

Select patients for biopsy amongst men with elevated PSA - โš–๏ธ Calibration Curve

Which Model is Better? ๐Ÿค”

Select patients for biopsy amongst men with elevated PSA - ๐Ÿ‘Œ Decision Curve

Traditional Statistical Metric:

  • Discrimination ๐Ÿ––: Modelโ€™s ability to separate between events and non-events (ROC Curve, AUROC, Sensitivity, Specificity, NPV, PPV, Lift etc).

  • Calibration โš–๏ธ: Agreement between predicted probabilities and the observed outcomes (Calibration Curve, Calibration in the large, Calibration in the small etc).

  • Problem๐Ÿ›‘ These metrics are not directly informative to clinical value, nor to full decision analytic approaches.

  • Solution๐Ÿ‘Œ Decision Curve Analysis calculates a clinical โ€œNet Benefitโ€ prediction models or diagnostic tests in comparison to default strategies of treating all or no patients.

How to draw a Decision Curve?

\[{\text{X axis: } {p_{t}} \text{ (Probability Threshold)}}\]

\[\begin{aligned} {\text{Y axis: }\text{NB Model} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}}} \end{aligned}\]

\[\begin{aligned} \text{NB Treat None} = 0 \end{aligned}\]

\[\begin{aligned} \text{NB Treat All} = {\text{Prevalence}} - {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}\]

Step 1 ๐Ÿ‘ฃ:
Benefit is Good

Green

๐Ÿ™‚

Red

๐Ÿ™

Green

Red

True Positives

Infected and Predicted as Infected - Good

๐Ÿ’Š
๐Ÿคข

False Positives

Not-Infected and Predicted as Infected - BAD

๐Ÿ’Š
๐Ÿคจ

False Negatives

Infected and Predicted as Not-Infected - BAD


๐Ÿคข

True Negatives

Not-Infected and Predicted as Not-Infected - GOOD


๐Ÿคจ

Decision Tree

Decision Tree

Decision Tree

Probability Threshold is derived from Equivalence between

\[EV_{Treat} = p(Disease) * U_{TP} + p(No Disease) * U_{FP}\]

\[EV_{NoTreat} = p(Disease) * U_{FN} + p(No Disease) * U_{TN}\]

Decision Tree

Probability Threshold is derived from Equivalence between

\[EV_{Treat} = EV_{{NoTreat}}\]

\[p(Disease) * U_{TP} + p(No Disease) * U_{FP} =p(Disease) * U_{FN} + p(No Disease) * U_{TN}\]

Decision Tree

Probability Threshold is derived from Equivalence between

\[EV_{Treat} = EV_{{NoTreat}}\]

\[p(Disease) * U_{TP} + (1-p(Disease)) * U_{FP} =p(Disease) * U_{FN} + (1-p(Disease)) * U_{TN}\]

Decision Tree

Probability Threshold is derived from Equivalence between

\[EV_{Treat} = EV_{{NoTreat}}\]

\[p(Disease) * (U_{TP} - U_{FN}) =(1-p(Disease)) * (U_{TN} - U_{FP})\]

Decision Tree

Probability Threshold is derived from Equivalence between

\[EV_{Treat} = EV_{{NoTreat}}\]

\[\frac{p(Disease)}{(1-p(Disease))} = \frac{(U_{TN} - U_{FP})}{(U_{TP} - U_{FN})}\]

Decision Tree

Probability Threshold is derived from Equivalence between

\[EV_{๐Ÿ’Š} = EV_{{No๐Ÿ’Š}}\]

\[\frac{p(๐Ÿคข)}{(1-p(๐Ÿคข))} = \frac{(U_{๐Ÿคจ} - U_{๐Ÿ’Š+๐Ÿคจ})}{(U_{๐Ÿ’Š+๐Ÿคข} - U_{๐Ÿคข})}\]

Step 1 ๐Ÿ‘ฃ: Benefit is Good

\[\begin{aligned} \text{Sensitivity } = \frac{\green{\bf{TP}}}{\text{TP + FN}} \end{aligned}\]

\[\begin{aligned} \text{Specificity} = \frac{\green{\bf{TN}}}{\text{TN + FP}} \end{aligned}\]

\[\begin{aligned} {\text{Prevalence}} = \frac{\text{TP + FN}}{\text{N}} \end{aligned}\]

\[\begin{aligned} \text{Net Benefit} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}\]

Step 1 ๐Ÿ‘ฃ: Benefit is Good

\[\begin{aligned} \text{Sensitivity } = \frac{\green{\bf{TP}}}{\text{Real Positives}} \end{aligned}\]

\[\begin{aligned} \text{Specificity} = \frac{\green{\bf{TN}}}{\text{Real Negatives}} \end{aligned}\]

\[\begin{aligned} {\text{Prevalence}} = \frac{\text{Real Positive}}{\text{N}} \end{aligned}\]

\[\begin{aligned} \text{Net Benefit} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}\]

Step 1 ๐Ÿ‘ฃ: Benefit is Good

\[\begin{aligned} \text{Sensitivity } = \frac{\green{\bf{TP}}}{\text{Real Positives}} \end{aligned}\]

\[\begin{aligned} \text{Specificity} = \frac{\green{\bf{TN}}}{\text{Real Negatives}} \end{aligned}\]

\[\begin{aligned} {\text{Prevalence}} = \frac{\text{Real Positive}}{\text{N}} \end{aligned}\]

\[\begin{aligned} {\text{1 - Prevalence}} = \frac{\text{Real Negatives}}{\text{N}} \end{aligned}\]

\[\begin{aligned} \text{Net Benefit} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}\]

Step 1 ๐Ÿ‘ฃ: Benefit is Good

\[\begin{aligned} \text{Sensitivity } = \frac{\green{\bf{TP}}}{\text{Real Positives}} \end{aligned}\]

\[\begin{aligned} \text{Specificity} = \frac{\green{\bf{TN}}}{\text{Real Negatives}} \end{aligned}\]

\[\begin{aligned} {\text{Prevalence}} = \frac{\text{Real Positive}}{\text{N}} \end{aligned}\]

\[\begin{aligned} {\text{1 - Prevalence}} = \frac{\text{Real Negatives}}{\text{N}} \end{aligned}\]

\[\begin{aligned} \text{Net Benefit} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}\]

\[\tiny{\begin{aligned} \text{Net Benefit} = {\text{Sensitivity}} * {\text{Prevalence}} - {\text{(1 - Specificity)}} * {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}}\]

Step 1 ๐Ÿ‘ฃ: Benefit is Good

\[\begin{aligned} \green{\bf{Sensitivity}} = \frac{\green{\bf{TP}}}{\text{Real Positives}} \end{aligned}\]

\[\begin{aligned} \red{\bf{1 - Specificity}} = \frac{\bf{\red{FP}}}{\text{Real Negatives}} \end{aligned}\]

\[\begin{aligned} {\text{Prevalence}} = \frac{\text{Real Positives}}{\text{N}} \end{aligned}\]

\[\begin{aligned} {\text{1 - Prevalence}} = \frac{\text{Real Negatives}}{\text{N}} \end{aligned}\]

\[\begin{aligned} \green{\bf{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}\]

\[\tiny{\begin{aligned} \green{\bf{Net Benefit}} = {\green{\bf{Sensitivity}}} * {\text{Prevalence}} - {\red{\bf{(1 - Specificity)}}} * {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}}\]

Step 1 ๐Ÿ‘ฃ: Benefit is Good

\[\begin{aligned} \green{\bf{Sensitivity}} = \frac{\green{\bf{TP}}}{\text{Real Positives}} \end{aligned}\]

\[\begin{aligned} \red{\bf{1 - Specificity}} = \frac{\bf{\red{FP}}}{\text{Real Negatives}} \end{aligned}\]

\[\begin{aligned} {\text{Prevalence}} = \frac{\text{Real Positives}}{\text{N}} \end{aligned}\]

\[\begin{aligned} {\text{1 - Prevalence}} = \frac{\text{Real Negatives}}{\text{N}} \end{aligned}\]

\[\begin{aligned} \green{\bf{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}\]

\[\tiny{\begin{aligned} \green{\bf{Net Benefit}} = {\green{\bf{Sensitivity}}} * {\text{Prevalence}} - {\red{\bf{(1 - Specificity)}}} * {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}}\]

\[\tiny{\begin{aligned} \text{Net Benefit Treat All} = {\green{\bf{1}}} * {\text{Prevalence}} - {\red{\bf{(1 - 0)}}} * {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}}\]

Step 1 ๐Ÿ‘ฃ: Benefit is Good

\[\begin{aligned} \green{\bf{Sensitivity}} = \frac{\green{\bf{TP}}}{\text{Real Positives}} \end{aligned}\]

\[\begin{aligned} \red{\bf{1 - Specificity}} = \frac{\bf{\red{FP}}}{\text{Real Negatives}} \end{aligned}\]

\[\begin{aligned} {\text{Prevalence}} = \frac{\text{Real Positives}}{\text{N}} \end{aligned}\]

\[\begin{aligned} {\text{1 - Prevalence}} = \frac{\text{Real Negatives}}{\text{N}} \end{aligned}\]

\[\begin{aligned} \green{\bf{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}\]

\[\tiny{\begin{aligned} \green{\bf{Net Benefit}} = {\green{\bf{Sensitivity}}} * {\text{Prevalence}} - {\red{\bf{(1 - Specificity)}}} * {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}}\]

\[\tiny{\begin{aligned} \text{Net Benefit Treat All} = {\text{Prevalence}} - {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}}\]

Step 1 ๐Ÿ‘ฃ: Benefit is Good

\[\begin{aligned} \green{\bf{Sensitivity}} = \frac{\green{\bf{TP}}}{\text{Real Positives}} \end{aligned}\]

\[\begin{aligned} \red{\bf{1 - Specificity}} = \frac{\bf{\red{FP}}}{\text{Real Negatives}} \end{aligned}\]

\[\begin{aligned} {\text{Prevalence}} = \frac{\text{Real Positives}}{\text{N}} \end{aligned}\]

\[\begin{aligned} {\text{1 - Prevalence}} = \frac{\text{Real Negatives}}{\text{N}} \end{aligned}\]

\[\begin{aligned} \green{\bf{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}\]

\[\tiny{\begin{aligned} \green{\bf{Net Benefit}} = {\green{\bf{Sensitivity}}} * {\text{Prevalence}} - {\red{\bf{(1 - Specificity)}}} * {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}}\]

\[\tiny{\begin{aligned} \text{Net Benefit Treat All} = {\text{Prevalence}} - {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}}\]

\[\tiny{\begin{aligned} \text{Net Benefit Treat None} = {\green{\bf{0}}} * {\text{Prevalence}} - {\red{\bf{(1 - 1)}}} * {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}}\]

Step 1 ๐Ÿ‘ฃ: Benefit is Good

\[\begin{aligned} \green{\bf{Sensitivity}} = \frac{\green{\bf{TP}}}{\text{Real Positives}} \end{aligned}\]

\[\begin{aligned} \red{\bf{1 - Specificity}} = \frac{\bf{\red{FP}}}{\text{Real Negatives}} \end{aligned}\]

\[\begin{aligned} {\text{Prevalence}} = \frac{\text{Real Positives}}{\text{N}} \end{aligned}\]

\[\begin{aligned} {\text{1 - Prevalence}} = \frac{\text{Real Negatives}}{\text{N}} \end{aligned}\]

\[\begin{aligned} \green{\bf{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}\]

\[\tiny{\begin{aligned} \green{\bf{Net Benefit}} = {\green{\bf{Sensitivity}}} * {\text{Prevalence}} - {\red{\bf{(1 - Specificity)}}} * {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}}\]

\[\tiny{\begin{aligned} \text{Net Benefit Treat All} = {\text{Prevalence}} - {\text{(1 - Prevalence)}} *{\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned}}\]

\[\tiny{\begin{aligned} \text{Net Benefit Treat None} = 0 \end{aligned}}\]

Step 2 ๐Ÿ‘ฃ:
Preference Differ

Step 2 ๐Ÿ‘ฃ: Preference Differ

Low Probability Threshold means that Iโ€™m worried about the outcome:

  • Iโ€™m worried about Prostate Cancer ๐Ÿฆ€
  • Iโ€™m worried about Heart Disease ๐Ÿ’”
  • Iโ€™m worried about Infection ๐Ÿคข

Step 2 ๐Ÿ‘ฃ: Preference Differ

High Probability Threshold means that Iโ€™m worried about the Intervention:

  • Iโ€™m worried about Biopsy ๐Ÿ’‰
  • Iโ€™m worried about Statins ๐Ÿ’Š
  • Iโ€™m worried about Antibiotics ๐Ÿ’Š

Step 3 ๐Ÿ‘ฃ:
Unit of Preference = Threshold Probability

Step 3 ๐Ÿ‘ฃ: Unit of Preference = Threshold Probability

Remember: almost always (specially in Health Care) -

Sensitivity does not have the same importance as Specificity and having 1 TP does not have the same clinical utility as having 1 FP.

A good example for a bad practice in evaluating performance of prediction model is the Youdenโ€™s J statistics:

\[{\displaystyle J={\frac {\green{\bf{TP}}}{{\green{\bf{TP}}}+{\red{\bf{FN}}}}}+{\frac {\green{\bf{TN}}}{{\green{\bf{TN}}}+{\red{\bf{FP}}}}}-1}\] Maximizing Youdenโ€™s J statistic might lead to a Probability Threshold that will do more harm than good, even if the prediction model is accurate!

Step 3 ๐Ÿ‘ฃ: Unit of Preference = Threshold Probability

Remember: almost always (specially in Health Care) -

Sensitivity does not have the same importance as Specificity and having 1 TP does not have the same clinical utility as having 1 FP.

A good example for a bad practice in evaluating performance of prediction model is the Youdenโ€™s J statistics:

\[{\displaystyle \green{\bf{J}}={\green{\bf{Sens}}}-{\red{\bf{(1 - Spec)}}}}\]

\[{\displaystyle \green{\bf{NB}}={\green{\bf{Sens}}} * {\text{Prev}}-{\red{\bf{(1 - Spec)}}}* {\text{(1 - Prev)}}*{\frac{{p_{t}}}{{1 - p_{t}}}}}\]

Step 3 ๐Ÿ‘ฃ: Unit of Preference = Threshold Probability

I wouldnโ€™t give more than 4 antibiotics in order to help 1 infected patient.

If a patientโ€™s risk was above 20% I will give him antibiotics, otherwise I wonโ€™t.

The risk of 20% is an odds of 1:4, so in using a threshold probability of 20%, the doctor is telling us โ€œmissing an infected patiant is 4 times worse than giving antibiotics to a healthy patient.โ€

\[p_t = \frac{1}{1 + 4} = 0.2\] \[\frac{p_t}{1 - p_t} = \frac{0.2}{1 - 0.2} = \frac{1}{4}\]

Step 3 ๐Ÿ‘ฃ: Unit of Preference = Threshold Probability

I will be indifferent ๐Ÿ˜
For having 1 TP for 4 FP \[p_t = \frac{1}{1 + 4} = 0.2\] \[\frac{p_t}{1 - p_t} = \frac{0.2}{1 - 0.2} = \frac{1}{4}\]

\[\begin{aligned}[t] {\text{Net Benefit}} &= {\frac{\text{1}}{\text{5}} - \frac{\text{4}}{\text{5}} * {\frac{1}{4}} = 0} \end{aligned}\]

Step 3 ๐Ÿ‘ฃ: Unit of Preference = Threshold Probability

I will be sad ๐Ÿ™
For having 1 TP for 5 FP \[p_t = \frac{1}{1 + 4} = 0.2\] \[\frac{p_t}{1 - p_t} = \frac{0.2}{1 - 0.2} = \frac{1}{4}\] \[\begin{aligned}[t] {\text{Net Benefit}} &= {\frac{\text{1}}{\text{6}} - \frac{\text{5}}{\text{6}} * {\frac{1}{4}} = -0.04166'} \end{aligned}\]

Step 3 ๐Ÿ‘ฃ: Unit of Preference = Threshold Probability

I will be happy ๐Ÿ™‚
For having 1 TP for 3 FP \[p_t = \frac{1}{1 + 4} = 0.2\] \[\frac{p_t}{1 - p_t} = \frac{0.2}{1 - 0.2} = \frac{1}{4}\]

\[\begin{aligned}[t] {\text{Net Benefit}} &= {\frac{\text{1}}{\text{4}} - \frac{\text{3}}{\text{4}} * {\frac{1}{4}} = 0.0625} \end{aligned}\]

Step 4 ๐Ÿ‘ฃ:
Benefit is actually Net Benefit

Step 4 ๐Ÿ‘ฃ: Benefit is actually Net Benefit

Letโ€™s think in terms of money ๐Ÿ’ธ

A wine importer buys โ‚ฌ1m of wine from France and sells it in the USA for $1.5m ๐Ÿท

Net Benefit = Income - Expenditure

Net Benefit = 1.5m$ - 1mโ‚ฌ = ? ๐Ÿค”

Letโ€™s say that 1โ‚ฌ is worth 1.25$

Exchange-Rate = 1.25 ($ / โ‚ฌ)

1mโ‚ฌ = 1m * 1.25$

Net Benefit = 1.5m$ - 1.25m$ = 250,000$

Which is the equivalent of being given 250,000$:

Net Benefit = 250,000$ - 0$ = 250,000$

Step 4 ๐Ÿ‘ฃ: Benefit is actually Net Benefit


๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}}\]


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}}\]

Step 4 ๐Ÿ‘ฃ: Benefit is actually Net Benefit


๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]

Step 4 ๐Ÿ‘ฃ: Benefit is actually Net Benefit


๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{2}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]

Step 4 ๐Ÿ‘ฃ: Benefit is actually Net Benefit


๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{2}}}{\text{10}} - \frac{\red{\bf{0}}}{\text{10}} * {\frac{{1}}{{4}}}\]


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{4}}}{\text{10}} * {\frac{{1}}{{4}}}\]

Step 4 ๐Ÿ‘ฃ: Benefit is actually Net Benefit


๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{2}}}{\text{10}} - \frac{\red{\bf{0}}}{\text{10}} * {\frac{{1}}{{4}}} = \frac{\green{\bf{2}}}{\text{10}}\]


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{4}}}{\text{10}} * {\frac{{1}}{{4}}} = \frac{\green{\bf{2}}}{\text{10}}\]

Step 5 ๐Ÿ‘ฃ: Net benefit can also be expressed as Interventions Avoided

Step 5 ๐Ÿ‘ฃ: Net benefit can also be expressed as Interventions Avoided


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}}\]


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ

\[{\text{Net Benefit Treat All}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}}\]

Step 5 ๐Ÿ‘ฃ: Net benefit can also be expressed as Interventions Avoided


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ

\[{\text{Net Benefit Treat All}} = \frac{\green{\bf{TP}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]

Step 5 ๐Ÿ‘ฃ: Net benefit can also be expressed as Interventions Avoided


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ

\[{\text{Net Benefit Treat All}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]

Step 5 ๐Ÿ‘ฃ: Net benefit can also be expressed as Interventions Avoided


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{4}}}{\text{10}} * {\frac{{1}}{{4}}}\]


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ

\[{\text{Net Benefit Treat All}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{7}}}{\text{10}} * {\frac{{1}}{{4}}}\]

Step 5 ๐Ÿ‘ฃ: Net benefit can also be expressed as Interventions Avoided


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{{\green{\bf{12}}}}{\text{40}} - \frac{{\red{\bf{4}}}}{\text{40}} = \frac{{\green{\bf{8}}}}{\text{40}}\]


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ

\[{\text{Net Benefit Treat All}} = \frac{{\green{\bf{12}}}}{\text{40}} - \frac{{\red{\bf{7}}}}{\text{40}} = \frac{{\green{\bf{5}}}}{\text{40}}\]

Step 5 ๐Ÿ‘ฃ: Net benefit can also be expressed as Interventions Avoided


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ

\[{\text{Net Benefit}} = \frac{{\green{\bf{8}}}}{\text{40}}\]


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ

\[{\text{Net Benefit Treat All}}= \frac{{\green{\bf{5}}}}{\text{40}}\]

\[\scriptsize{\text{(Net Benefit - Net Benefit All)} * \frac{1-p_t}{p_t} = (\frac{{\green{\bf{8}}}}{\text{40}} - \frac{{\green{\bf{5}}}}{\text{40}}) * 4 = \frac{{\green{\bf{3}}}}{\text{10}} }\]

\[\scriptsize{\text{Interventions Avoided (per 100 cases)} = \frac{\green{\bf{3}}}{10} * 100 = \green{\bf{30}}}\]

Step 5 ๐Ÿ‘ฃ: Net benefit can also be expressed as Interventions Avoided

๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿคจ๐Ÿคจ๐Ÿคจ

\[\scriptsize{\text{Interventions Avoided (per 100 cases)} = (\frac{\green{\bf{TN}}}{\text{N}} - \frac{\red{\bf{FN}}}{\text{N}} * {\frac{{1 - p_{t}}}{{p_{t}}}}) * 100}\]

Step 5 ๐Ÿ‘ฃ: Net benefit can also be expressed as Interventions Avoided

๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿคจ๐Ÿคจ๐Ÿคจ

\[\scriptsize{\text{Interventions Avoided (per 100 cases)} = (\frac{\green{\bf{\text{3}}}}{\text{10}} - \frac{\red{\bf{FN}}}{\text{10}} * 4) * 100}\]

Step 5 ๐Ÿ‘ฃ: Net benefit can also be expressed as Interventions Avoided

๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿคจ๐Ÿคจ๐Ÿคจ

\[\scriptsize{\text{Interventions Avoided (per 100 cases)} = (\frac{\green{\bf{\text{3}}}}{\text{10}} - \frac{\red{\bf{\text{0}}}}{\text{10}} * 4) * 100}\]

Step 5 ๐Ÿ‘ฃ: Net benefit can also be expressed as Interventions Avoided

๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿคจ๐Ÿคจ๐Ÿคจ

\[\scriptsize{\text{Interventions Avoided (per 100 cases)} = (\frac{\green{\bf{\text{3}}}}{\text{10}} - \frac{\red{\bf{\text{0}}}}{\text{10}} * 4 )* 100} = \green{\bf{30}} \]

Step 5 ๐Ÿ‘ฃ: Net benefit can also be expressed as Interventions Avoided


๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}}\]


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ

\[{\text{Net Benefit Treat All}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}}\]

Step 5 ๐Ÿ‘ฃ: Net benefit can also be expressed as Interventions Avoided


๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ

\[{\text{Net Benefit Treat All}} = \frac{\green{\bf{TP}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]

Step 5 ๐Ÿ‘ฃ: Net benefit can also be expressed as Interventions Avoided


๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{2}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ

\[{\text{Net Benefit Treat All}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{{1}}{{4}}}\]

Step 5 ๐Ÿ‘ฃ: Net benefit can also be expressed as Interventions Avoided


๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{2}}}{\text{10}} - \frac{\red{\bf{0}}}{\text{10}} * {\frac{{1}}{{4}}}\]


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ

\[{\text{Net Benefit Treat All}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{7}}}{\text{10}} * {\frac{{1}}{{4}}}\]

Step 5 ๐Ÿ‘ฃ: Net benefit can also be expressed as Interventions Avoided


๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{8}}}{\text{40}} - \frac{\red{\bf{0}}}{\text{10}} * {\frac{{1}}{{4}}} = {\frac{{\green{\bf{8}}}}{{40}}}\]


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ

\[{\text{Net Benefit Treat All}} = \frac{{\green{\bf{12}}}}{\text{40}} - \frac{{\red{\bf{7}}}}{\text{40}} = \frac{{\green{\bf{5}}}}{\text{40}}\]

Step 5 ๐Ÿ‘ฃ: Net benefit can also be expressed as Interventions Avoided


๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ

\[{\text{Net Benefit}} = \frac{{\green{\bf{8}}}}{\text{40}}\]


๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ

\[{\text{Net Benefit Treat All}}= \frac{{\green{\bf{5}}}}{\text{40}}\]

\[\scriptsize{\text{(Net Benefit - Net Benefit All)} * \frac{1-p_t}{p_t} = (\frac{{\green{\bf{8}}}}{\text{40}} - \frac{{\green{\bf{5}}}}{\text{40}}) * 4 = \frac{{\green{\bf{3}}}}{\text{10}} }\]

\[\scriptsize{\text{Interventions Avoided (per 100 cases)} = \frac{\green{\bf{3}}}{10} * 100 = \green{\bf{30}}}\]

Step 5 ๐Ÿ‘ฃ: Net benefit can also be expressed as Interventions Avoided

๐Ÿ’Š๐Ÿ’Š
๐Ÿ˜ท๐Ÿ˜ท๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ

\[\scriptsize{\text{Interventions Avoided (per 100 cases)} = (\frac{\green{\bf{TN}}}{\text{N}} - \frac{\red{\bf{FN}}}{\text{N}} * {\frac{{1 - p_{t}}}{{p_{t}}}}) * 100}\]

Step 5 ๐Ÿ‘ฃ: Net benefit can also be expressed as Interventions Avoided

๐Ÿ’Š๐Ÿ’Š
๐Ÿ˜ท๐Ÿ˜ท๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ

\[\scriptsize{\text{Interventions Avoided (per 100 cases)} = (\frac{\green{\bf{\text{7}}}}{\text{10}} - \frac{\red{\bf{FN}}}{\text{10}} * 4) * 100}\]

Step 5 ๐Ÿ‘ฃ: Net benefit can also be expressed as Interventions Avoided

๐Ÿ’Š๐Ÿ’Š
๐Ÿ˜ท๐Ÿ˜ท๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ

\[\scriptsize{\text{Interventions Avoided (per 100 cases)} = (\frac{\green{\bf{\text{7}}}}{\text{10}} - \frac{\red{\bf{\text{1}}}}{\text{10}} * 4) * 100}\]

Step 5 ๐Ÿ‘ฃ: Net benefit can also be expressed as Interventions Avoided

๐Ÿ’Š๐Ÿ’Š
๐Ÿ˜ท๐Ÿ˜ท๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ

\[\scriptsize{\text{Interventions Avoided (per 100 cases)} = (\frac{\green{\bf{\text{7}}}}{\text{10}} - \frac{\red{\bf{\text{1}}}}{\text{10}} * 4 )* 100} = \green{\bf{30}} \]

How much of a difference is enough?

Invasive Test might add information to the absolute risk with a possible Test Harm in forms of side affects or expenditure of time, effort or money.

I will be indifferent ๐Ÿ˜ for having 1 TP for 10 Invasive Tests \[TestHarm = \frac{1}{10} = 0.1\]

\[\begin{aligned} \text{Net Benefit} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned} - TestHarm\]

How much of a difference is enough?

Invasive Test might add information to the absolute risk with a possible Test Harm in forms of side affects or expenditure of time, effort or money.

I will be indifferent ๐Ÿ˜ for having 1 TP for 10 Invasive Tests \[TestHarm = \frac{1}{10} = 0.1\]

\[\begin{aligned} \text{Net Benefit} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} \end{aligned} - TestHarm\]

The same is true for Implementation of Prediction Models ๐Ÿ”ฎ

How much of a difference in curves is enough?


๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช
๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}} - TestHarm\]



๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{N}} - \frac{\red{\bf{FP}}}{\text{N}} * {\frac{{p_{t}}}{{1 - p_{t}}}}\]

How much of a difference in curves is enough?


๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช
๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{1}{{4}}} - TestHarm\]



๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{1}{{4}}}\]

How much of a difference in curves is enough?


๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช
๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{1}{{4}}} - \frac{1}{10} * \frac{\red{\bf{10}}}{10}\]



๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{TP}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{1}{{4}}}\]

How much of a difference in curves is enough?


๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช
๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{1}{{4}}} - \frac{1}{10} * \frac{\red{\bf{10}}}{10}\]



๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{FP}}}{\text{10}} * {\frac{1}{{4}}}\]

How much of a difference in curves is enough?


๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช
๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{0}}}{\text{10}} * {\frac{1}{{4}}} - \frac{1}{10} * \frac{\red{\bf{10}}}{10}\]



๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{3}}}{\text{10}} - \frac{\red{\bf{4}}}{\text{10}} * {\frac{1}{{4}}}\]

How much of a difference in curves is enough?


๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช๐Ÿงช
๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{2}}}{\text{10}}\]



๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š๐Ÿ’Š
๐Ÿคข๐Ÿคข๐Ÿคข๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿคจ๐Ÿ˜ท๐Ÿ˜ท๐Ÿ˜ท

\[{\text{Net Benefit}} = \frac{\green{\bf{2}}}{\text{10}}\]

How is treatment effect taken into account?

How is treatment effect taken into account?